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Transport of solutes undergoing a Freundlich type nonlinear and nonequilibrium
adsorption process
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We investigate the behavior of solutes undergoing nonequilibrium adsorption processes that lead to a Fre-
undlich isotherm in equilibrium. In contrast to a frequently used model we do not assume that the adsorption
rate is proportional to the difference between adsorbed and equilibrium concentrations, but inspect two non-
linear laws governing the path to equilibrium. With some asymptotic considerations and numerical simulations
we find that depending on the model parameters, the concentration in solution and the mass adsorbed by the
matrix do not necessarily reach quasiequilibrium.
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I. INTRODUCTION

In continuum approximations, transport of solutes in p
rous media is usually described by the so-called advect
dispersion~or convection-diffusion! equation

]c

]t
52U•“c1“•D“c1Q, ~1!

complemented by appropriate initial/boundary conditio
Herec denotes the concentration of the solute,U is the ve-
locity of the fluid,D is the effective dispersion tensor, andQ
represents sources or sinks. The latter can be used to des
interactions with the sediment, e.g., by adsorptio
desorption.

In this paper we shall focus on this kind of solute-mat
interaction. If we denote bys the mass adsorbed to the sol
matrix, we obtainQ52]s/]t due to mass conservation
Further we assume one spatial dimension and homogen
U andD, such that the transport equation now reads

]

]t
c52U

]

]x
c1D

]2

]x2
c2

]

]t
s. ~2!

The simplest possible relation betweens andc is a local
equilibrium wheres is just a function~called ‘‘isotherm’’!
of c,

s5 f ~c!. ~3!

In case of a linear isotherm,s5kc, the solutions of the trans
port equation can be found from the solutions of Eq.~1! with
Q50 by rescaling the time by a ‘‘retardation factor’’ 1/(
1k).

In natural porous media, however, usually more com
cated and nonlinear isotherms are observed, e.g., the L
muir isotherm s5k1c/(11k2c) taking into account tha
there is only a finite number of adsorption sites in the m
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dium. Frequently one observes power laws over several
ders of magnitude, called ‘‘Freundlich isotherms,’’

s5kcn, ~4!

where k and n are constants with 0,n<1 for many sub-
stances such as pesticides, polycylic aromatic hydrocarb
~PAH’s!, or heavy metals~@1–5#!.

A further complication is that in many cases the transp
of substances is too fast to allow a description of the adso
tion process by an equilibrium process. Unfortunately, fin
ing an appropriate phenomenological model for the adso
tion process is a very difficult and work-intensive procedu
on the experimental side and an ill-posed problem on
theoretical side.

In this paper we show the following.
~i! The path to equilibrium is highly important for th

asymptotic transport behavior of substances. Systems
the same equilibrium isotherm that approach the isothe
following different laws can show fundamentally differe
behavior if both transport and adsorption are taking plac

~ii ! The concentrations in the nonequilibrium reacti
transport model can differ by many orders of magnitu
from concentrations predicted from an equilibrium mod
with the same isotherm.

~iii ! Even a substance obeying a linear isotherm can sh
markedly nonlinear behavior if the path to the equilibrium
governed by a nonlinear relationship.

Further we rederive some well-known results for the d
fusive case for illustration of the limitations and possib
modifications of the form of the asymptotic solution we a
assuming.

II. TWO GENERALIZED NONLINEAR
NONEQUILIBRIUM MODELS

A frequently used model for the temporal change of t
adsorption rate on the concentrationc and the adsorbed mas
s per unit volume is proportional to the deviation from th
equilibrium isotherm,
©2002 The American Physical Society02-1
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]s

]t
5r ~kcn2s!, ~5!

with r ,k.0 and 0,n<1 ~e.g., Ref.@6#!. This model is, like
most other models, purely phenomenological and not deri
from basic principles. It is interesting to note that there i
linear dependence ons, but a nonlinear dependence onc. In
equilibrium,s andc are related by the Freundlich isotherm

s5kcn. ~6!

In this paper we shall investigate two nonequilibriu
models that share this latter property, i.e., which lead t
Freundlich isotherm in equilibrium, but show a nonline
dependence both ons andc. Both models are generalization
of Eq. ~5! and have to our knowledge not been discussed
the literature.

Model 1:

]s

]t
5r ~kpcp2sq!, ~7!

with r ,p,q.0. In equilibrium (]s/]t50), adsorption in this
model is described by a Freundlich isotherm with parame
k5kp

1/q and n5p/q. As the Freundlich exponentn usually
lies between 0 and 1, we assume thatp,q.

Model 2:

]s

]t
5r 6ukcn2sun. ~8!

In equilibrium (]s/]t50), adsorption in this model is de
scribed by a Freundlich isotherm with parametersk and n.
The coefficientr 6 is

r 65H r 1.0 if s,kcn ~adsorption phase!,

r 2,0 if s.kcn ~desorption phase!,
~9!

such that either adsorption or desorption always try to dr
the system towards equilibrium.

III. ASYMPTOTIC CONSIDERATIONS

We are interested in the large-time behavior of substan
undergoing adsorption processes described by our mod
and 2. We assume that the time dependence ofc ands in the
tail after injection of a finite mass into the system at timet
50 can be described by power laws asymptotically,

c~ t,x!;t2ag~x!, ~10!

s~ t,x!;t2bs~x!, ~11!

with a,b.0 for t→`. This approach is less general than t
similarity solution chosen in Refs.@7# and@8# for quasiequi-
librium adsorption following a Freundlich isotherm. This s
lution is of the form
04140
d
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c~ t,x!;t2ah~xt2d!. ~12!

However, in the lowest-order approximation for the qua
equilibrium case, the functionh can be shown to be a powe
law in the tail region@7# such that the similarity solution an
our separation assumption lead to the same asymptotic
sults for largex and t @9#. In the quasiequilibrium case, on
finds that the concentration decays like a power lawt2a with
a51/(12n) for t→`.

In Sec. III B, however, we show that these approach
lead to different asymptotic behavior in the case of vanish
advection, i.e., if diffusion is the only transport process.
this limit, the concentration after injection of a mass pulse
an inert substance no longer decays exponentially. In f
the transport equation reduces to the heat diffusion equa
then, and it is well known that the solution decays prop
tionally to t20.5, i.e., it shows power law behavior even if n
adsorption takes place. Depending on the spatial exten
the medium, both types of asymptotic solution can be re
ized in different time intervals: As long as the diffusion fro
has not reached the boundary of the medium, the solu
approaches the similarity form. If the solute concentrat
becomes significant close to the boundary, the separa
form takes over. Therefore, for illustration of the differe
kinds of asymptotic solutions discussed above,
asymptotic solution for the purely diffusive case will be di
cussed separately.

For nonvanishing advection speed, the power law beh
ior can be regarded as evidence for a nonlinear adsorp
process. In the case of linearly adsorbed or inert substa
obeying a convection-diffusion equation, the concentrat
decays exponentially~Ref. @10#! after pulse-type injection.
We assume that the power law decay is also valid for
nonequilibrium models and verify this by numerical simul
tions. As we found a good agreement with numerical so
tions and as both approaches agree to lowest order f
power law form of the spatial distribution, we worked wit
the simpler separation assumption rather than with the s
larity solution. Note that on an infinite domain, the sepa
tion assumption~unlike the similarity solution! can only be
valid for the tail and not for the propagating front of th
diluted substance.

A. Nonvanishing velocity

Let us first discuss Eq.~2! for UÞ0. Inserting Eqs.~10!,
~11! into Eq. ~2!, we obtain

2at2a21g~x!52Ug8~x!t2a1Dg9~x!t2a

1bs~x!t2b21. ~13!

For large times,t→`, we can neglect the terms proportion
to t2a21 compared tot2a. Thus, Eq.~13! can only be con-
sistent if the terms proportional tot2a are balanced by the
t2b21 term, such thata andb are related by

a5b11. ~14!
2-2
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Referring back to Eq.~2!, neglecting the terms proportiona
to t2a21 compared tot2a5t2b21 is equivalent to neglect
ing the mobile concentrationc compared tos. In other
words, our assumption requires that small concentrations
favorably adsorbed, as it is the case for the Freundlich
therm. Using this consistency relationship betweena andb,
we can derive the exact value fora for our nonequilibrium
models.

1. Model 1

For the first model, we find from Eqs.~7! and ~11!,

2bs~x!t2b21;r @kpg~x!pt2ap2s~x!qt2bq#. ~15!

As the signs ofr ,s,g,a,b,kp all are non-negative, there ar
only two possibilities to fulfill the asymptotic equation fo
t→`.

~i! For large times, the term on the left-hand side is b
anced by the second term on the right-hand side, i.e.,

2b2152a52bq5~12a!q, ~16!

where we used Eq.~14!, such that

a5
q

q21
, ~17!

irrespective ofp. On the same time, the first term on th
right-hand side must decay at least as fast as the second
such that

ap>bq5~a21!q5a, ~18!

due to Eq.~17!, or equivalently

p>1. ~19!

From Eq.~18! andn5p/q,1 we also deduce that

a<1/~12n!, ~20!

i.e., this asymptotic solution cannot decay faster than
quasiequilibrium solution.

~ii ! For large times, the two terms on the right-hand s
balance each other and the term on the left-hand side is
higher order int21, i.e.,

~a21!q5ap, ~21!

such that

a5
1

12n
, ~22!

wheren5p/q is the exponent of the Freundlich isotherm f
the equilibrium state of model 1. This is the same result t
Refs. @7# and @9# obtained for reactive transport in the Fr
undlich quasiequilibrium case. In this case, the term on
04140
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left-hand side~lhs! must decay at least as fast as the terms
the right-hand side~rhs!, such that

b115a>ap, ~23!

or equivalently

p<1. ~24!

Hence we find that there is a critical exponentp51 at
which there is a change in the asymptotic behavior of
concentration at a fixed position. Forp<1, the concentration
decays following the same power law as in the quasiequi
rium case, with an exponent that is determined by the eq
librium Freundlich exponentn5p/q. For p.1, another
power law results that is determined by the desorption ex
nent q rather than the equilibrium Freundlich exponent.
transport model relying on measurements of the isothe
only can, therefore, lead to vast overestimation or undere
mation of the concentration. The transition atp51 is con-
tinuous forn fixed, since at this pointn5p/q51/q such that

lim
p↘1

a~p,q!5
q

q21
5

1

12
1

q

5
1

12n
5 lim

p↗1
a~p,q!. ~25!

2. Model 2

For the second model, we find from Eqs.~7!, ~11!, and
~14!,

2bs~x!t2a;r 6ukg~x!nt2an2s~x!t2a11un. ~26!

Again, there are only two possibilities to fulfill this
asymptotic equation fort→`.

~i! For large times, the term on the left-hand side is b
anced by the desorption term~for adsorption, the rhs is posi
tive and cannot balance the negative lhs!, i.e.,

a5~a21!n, ~27!

an.a21, ~28!

or equivalently

a5
n

n21
, ~29!

n.
1

n
. ~30!

Again, we can see from Eq.~27! that a,1/(12n), i.e., this
solution decays slower than the quasiequilibrium solution

~ii ! For large times, the two terms on the rhs balance e
other, and the lhs is of the order of the rhs or smaller, i.e

an5a21, ~31!
2-3
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UWE JAEKEL AND HARRY VEREECKEN PHYSICAL REVIEW E65 041402
a>ann, ~32!

or equivalently

a5
1

12n
, ~33!

n<
1

n
. ~34!

In this case we obtain the result from Refs.@7# and@9# for the
quasiequilibrium case again.

Hence we find a critical exponentn51/n, distinguishing a
regime attracting the solutions towards the quasiequilibri
asymptotics (n<1/n) and another regime leading to qualit
tively different solutions (n.1/n). The transition is continu-
ous atn51/n, as

lim
n↗1/n

a~n,n!5 lim
n↗1/n

n

n21
5 lim

n↗1/n

1

12
1

n

5
1

12n

5 lim
n↘1/n

a~n,n!. ~35!

3. Spatial distribution and attraction towards equilibrium

We have found in the preceding section that depending
the values of the parametersp and n, respectively, our two
models can lead to asymptotic behavior different from
quasiequilibrium solution. In those cases wherea51/(1
2n) as in the quasiequilibrium case, the term]s/]t decayed
faster than thec- and s-dependent summands on the righ
hand side of Eqs.~7! and ~8! such thats and c approach a
quasiequilibrium state where]s/]t50. The models are cho
sen in a way such that this equilibrium state is equal t
Freundlich isotherm and we expect that one obtains the s
asymptotic behavior as for the quasiequilibrium model, i.e
power law in the spatial distribution

tac~x,t !;g~x!;S kn

U D a

xa, ~36!

in the tail region, as shown in Refs.@7# or @9#.
For parameters chosen such thataÞ1/(12n), the rhs of

Eqs. ~7! and ~8! depends only ons for t→`, while the
c-dependent term can be neglected. This means that ra
than approaching quasiequilibrium betweenc and
s, tas(x,t)5s(x) converges to a spatially constant fun
tion. If we choose, e.g.,p.1 in Eq. ~15!,

bs~x!t2a;rs~x!qt (12a)q, ~37!

and, therefore,@sincea5(12a)q#

s~x!;S r

b D 1/12q

. ~38!
04140
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For model 2 withn.1/n, we find from Eq.~26! analo-
gously,

s~x!;s0ªUr 2

b U1/12n

. ~39!

This makes it easy to construct the spatial distribution
the concentrationc. We had assumed that we could neglecc

and ċ compared tos and ṡ, respectively, so the transpo
equation reads for large times,

U
dg

dx
2D

d2g

dx2
5bs[const, ~40!

ass5s(x) is a constant in this case, and the only power l
solution of this equation is

g5
bs

U
x, ~41!

i.e., linear inx.

B. Vanishing velocity

An interesting modification is necessary if there is no a
vection, i.e., ifU50, such that the only transport process
diffusion. For simplicity and illustration, we will conside
only the quasiequilibrium case for the Freundlich isothe
s5kcn. In this case, Eq.~2! becomes

~11kncn21!
]

]t
c5D

]2

]x2
c. ~42!

This equation can be mapped to the porous media equa
@11# whose asymptotics is well known. However, in order
illustrate the modifications necessary in this case, we pre
an elemental treatment here.

Formally, one can use the same separation assumptio
in the advection-diffusion equation, and will obtain the sam
kind of solution and the same asymptotic behavior in tim
However, whether there is a nontrivial solution forg or not
depends on the spatial extent of the system. For an infi
system another power law is derived than for a finite syste

To show this, let us insert Eq.~10! into Eq.~42!. For large
times, the concentration at a given point is approaching 0
to diffusion, such that 1!kncn21. Multiplying by ta, we
obtain

g9~x!52
akn

D
g~x!n, ~43!

which is, whenx is reinterpreted as a time coordinate, t
equation of motion of an anharmonic oscillator~as long as
g>0). This has to be supplemented by appropriate bound
conditions. For a finite system, we could for instance assu
that the mass is injected att50 andx50 and absorbed at th
2-4
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boundariesx52L and x5L, such thatc(t,2L)5c(t,L)
[0. This would lead to the boundary conditions

g~2L !5g~L !50, ~44!

forming a boundary value problem together with Eq.~43! on
the interval@2L,L#.

It is well known that for the casen51 ~harmonic oscil-
lator!, this problem is a classical eigenvalue problem that
nontrivial solutions only for certain values ofL. In this case,
v5akn/D is the angular frequency, and in order to obtain
positive solution on@2L,L# with zero boundary values, th
oscillator must perform exactly half an oscillation in a tim
interval of length 2L, i.e., v5p/2L or L5(p/2)A(D/ak).
The main reason for this behavior is that for the harmo
oscillator the frequency does not depend on the amplitud
the oscillation. FornÞ1 this is no longer true, and we sho
in the Appendix that the nonlinear problem defined by E
~43! and~44! has a solution for any value ofL. Thus we get
a consistent solution for a finite medium.

For an infinite medium, however, this solution is n
longer consistent, since we expect that the shape of the
lution is smoothed out more and more with increasing tim
while a nontrivial g(x) would mean that the shap
‘‘freezes.’’ This freezing can in fact be observed for the t
in the advective case, but does not apply to the front of
distribution. A more appropriate assumption on t
asymptotic form of the solution is therefore provided by
similarity solutionfor the concentration

c~x,t !;t2aG~xt2d! for t→`, ~45!

which is dispersed infinitely fort→`. Feeded into Eq.~42!
and using 1!kncn21 for large times as the concentratio
goes to zero, this means that

2knG~j!n21t2a(n21)2a21@aG~j!1djG8~j!#;Dt2a22d,

~46!

with jªt2dx. If we assume that the mass pulse is injected
x50, we know from the symmetry of the problem th
G8(0)50 such that the second term on the left-hand sid
of second order inj and thus can be neglected for any fix
x, sincej5xt2d→0 for t→`. Hence we find by balancing
the exponents int that

a~n21!2a215a22d. ~47!

We can find a second equation relatinga andd from the
conservation of mass,

d

dt
Mª

d

dtE2`

`

~c1s!dx5E
2`

` S U
]

]x
c1D

]2

]x2
cD dx50,

~48!

where the last line results from a partial integration assum
the boundary condition thatc and itsx derivative decay fas
04140
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enough forx→6`. For c→0 we haves5kcn@c such that
for large times most of the mass is in the immobile phass
andc can be neglected. Thus fort→`,

M;E
2`

`

s dx5E
2`

`

kcn dx5E
2`

`

kt2anG~xt2d!n dx

5kt2an1dE
2`

`

G~j!n dj. ~49!

This can only be constant, if

d5an. ~50!

From Eqs.~47! and ~50! we can conclude that

a5
1

n11
, ~51!

in contrast toa51/(12n) in the advective case. Note tha
this result is valid for one spatial dimension, but can be g
eralized easily to an arbitrary number of dimensions.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

Our analysis is not a rigorous derivation based only on
transport and adsorption equations, but rests on the assu
tion that the asymptotic form of the solution is properly d
scribed by either Eq.~10! or Eq. ~45!. In order to test these
assumptions, we performed a number of one-dimensio
numerical experiments with different parameter sets a
found good agreement with the power law asymptotics
rived in the previous sections, if the system could evolve
a time long enough. Depending on the value of the mo
parameters~e.g., for small r ), the convergence to the
asymptotic solution can of course be very slow. In this s
tion, we show some exemplary results for the different ca
discussed.

The transport equation, Eq.~2!, was solved numerically
by a straightforward, explicit finite difference scheme, w
an adaptive time step control ensuring that the updated c
centration could not become negative. Depending on
model, the term]s/]t can diverge fors→0 or c→0. In
order to avoid difficulties with this term, a tiny backgroun
concentration was added in some cases, and we verified
the results were not sensitive to variations of the backgrou
as long as the background was negligible compared toc and
s.

For both of our models, one can obtain cases that do
reach quasiequilibrium fort→`, but stay close to the quas
equilibrium solution for intermediate times~for large r 6 ,k
as long as the concentrations do not become too small!.

A. Characteristic scales

Due to the fact that there are different interesting char
teristic time scales, we do not introduce new dimensionl
variables, but the results will be presented in units of
following characteristic scales.
2-5
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1. Time scales

There are several characteristic time scales involved in
problem, some of them related to transport, others, suc
r 21 in model 1, related to adsorption. For the representa
of breakthrough curves~BTC’s!, i.e., the concentration at
fixed positionx0, we use the advection time scalex0 /U as a
unit. Note that adsorption and desorption lead to retardat
such that the peak value of the BTC might be reached o
for t@x0 /U.

For the advection free case of a finite system, anot
interesting time scale is the ‘‘escape time’’tesc, after which
a significant amount of mass has reached the bounda
This scale can be easily estimated by dimensional analy
tesc has dimensionT ~time! and can depend only on th
system sizeL, the total massM injected, the dispersion co
efficient D ~dimensionL2/T), the Freundlich coefficientk
@dimension (M /L)12n#, and the dimensionless exponentn.
For large times,c→0 and the nonlinear time derivative op
erator on the lhs of Eq.~42! becomeskncn21]/]t. Therefore,
scaling ofk by a factor ofA is the same as scaling the tim
variable byA21, since

Akncn21]/]t5kncn21]/]~A21t !. ~52!

This means thattesc depends linearly onk ~in the low-
concentration regime!. Dimensional analysis yields, there
fore,

tesc5 f ~n!kMn21
L32n

D
5: f ~n!t0 , ~53!

where f (n) is a function only depending onn, which we
expect to be of order unity. In the casen51 andk@1 ~since
we assumedc!s in the analysis, which is always fulfilled

FIG. 1. Breakthrough curve, i.e., time dependence of the c
centration at a fixed positionx0, for a simulation of model 1 in a
case withp50.64, q50.8 in a double-logarithmic plot. The con
centrationc is measured in units of (kn)1/(12n), and timet in units
of the advection time scalex0 /U. Also shown is the expected
power law with exponenta55, predicted by the nonequilibrium
model.
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for t→` only for n,1) this is of course consistent with th
well-known resulttesc;kL2/(2D).

Finally, we use the characteristic time scaleD/U2, i.e.,
the time at which transport begins to become dominated
advection rather than diffusion in the inert case.

2. Spatial scales

The approximations for the rescaled concentrationg
5tac should become valid forx@D/U. For distances
smaller than the spatial scaleD/U, transport is dominated by
diffusion.

For systems of finite extent@2L,L#, the system radiusL
plays a natural role.

3. Concentration

In quasiequilibrium, the local retardation factor is (
1kncn21) as in Eq.~42!. Therefore, we expect nonlinea
effects to become important for

kncn21>1

c<~kn!1/(12n), ~54!

and use (kn)1/(12n) as a natural concentration scale.

B. Results for nonvanishing velocity

1. Model 1

For p<1, we observe the same behavior as in the qu
equilibrium case. Figure 1 shows the breakthrough cu
~i.e., the concentrationc at a fixed position! for a case with
p50.64,q50.8, i.e.,n5p/q50.8. As predicted, this curve
shows a power law dependence with an exponent oa
51/(12n)55 for large times. The shape of the rescal
spatial distributiontac(x,t) should approachg(x) in the tail
region, i.e., become time independent. In Refs.@7# and@9# it
is shown that forx@D/U, this distribution is proportional to

- FIG. 2. Asymptotic time invariance of the rescaled mobile co
centrationg(x)5tac(x,t) in a simulation withp50.64, q50.8.
The figure showstac(x,t) at different timest540,80,160,3203t0

~with t053.3D/U2), and the predicted power lawg(x)
5(nk/U)5x5 describing the tail in the quasiequilibrium case forx
@D/U ~but smaller than the position of the front!.
2-6
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a power lawg(x)}xa. This behavior was also observed
our simulations forp,1. Figure 2 shows an example.

For p.1, our asymptotic consideration led to the pred
tion that breakthrough curves decay asymptotically l
t2q/(q21). This prediction could be verified in our numeric
simulations. Figure 3 shows a breakthrough curve for
case p52,q52.5. The exponent of the power law isa
5q/(q21)55/3'1.667, and thus the breakthrough curv
decay considerably slower than in the corresponding equ
rium case forn5p/q50.8 wherea51/(12n)55.

Furthermore, we predicted that the rescaled adsor
mass distributions(x)5tbs(x,t) converges towards a spa
tial constant distribution in this cases(x)[s0
5(r /b)1/(12q). This behavior is shown in Fig. 4.

Based on this result, we derived that the mobile conc
tration c increases linearly inx. For model 1, Eq.~41! reads

FIG. 3. Breakthrough curve, i.e., time dependence of the c
centration at a fixed positionx0, for a simulation of model 1 in a
case withp52, q52.5 in a double-logarithmic plot. Also show
are the power laws with the exponenta55/3, predicted by the
nonequilibrium model and exponenta55, predicted by a quasi
equilibrium model with the same equilibrium Freundlich isother

FIG. 4. Convergence of the rescaled adsorbed mass de
s(x)5tbs(x,t) towards a constant values0 in a simulation with
p52,q52.5. The figure showstbs(x,t) at different times t
5200,3200,25 600,204 800,1 638 4003t0 ~with t05D/U2), nor-
malized to the predicted asymptotic values05(r /b)1/(12q).
04140
-

e

-

ed

-

tac~x,t !;g~x!5
bs

U
x. ~55!

This is illustrated in Fig. 5.
It is interesting to note that for the model that does n

reach quasiequilibrium, the ‘‘comet shape’’ from Fig. 2
inverted. In contrast to the quasiequilibrium case with
self-sharpening front, in Fig. 5 the front is propagating a
disperging rapidly while the position of the maximum co
centration moves slowly towards infinity. The shape does
course depend on the parameters and for fast adsorption
desorption rate constants the front can look self-sharpen
for a long time and breakthrough curves can stay close to
quasiequilibrium solutions before approaching t
asymptotic solution fort→`.

-

.

ity

FIG. 5. Convergence of the rescaled mobile concentra
g(x)5tac(x,t) towards a linear function in a simulation withp
52, q52.5. The figure showstac(x,t) at different times t
5200,3200,25 600,204 800,1 638 4003t0 ~with t05D/U2), and
the predicted asymptotic linear functiong(x)5U/b(r /b)1/(12q)x
describing the tail.

FIG. 6. Breakthrough curve for a simulation of model 2 in
case withn50.8, n53 in a double-logarithmic plot. Also shown
are the power laws with exponenta53/2, predicted by the non-
equilibrium model, and exponenta55, predicted by a quasiequi
librium model with the same equilibrium Freundlich isotherm.
2-7
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2. Model 2

For n<1/n, we observed again that the solutions a
proached the quasiequilibrium asymptotics. We don’t pres
a figure here, the results look very similar as in model 1.

For n.1/n, the results of the simulations agreed with o
asymptotic results as they did for model 1. Figure 6 sho
the breakthrough curves for a case withn50.8 andn53. As
predicted from our asymptotic considerations, the concen
tions decays following a power law in time with an expone
of n/(n21)523/2 rather than 1/(n21)525 as predicted
by the corresponding quasiequilibrium model. Figure
shows the spatial distribution ofs, rescaled bytb, which
slowly approaches the constant value predicted in Eq.~39!.

FIG. 7. Convergence of the rescaled adsorbed mass de
g(x)5tbs(x,t) to its asymptotic value in a simulation of model
with n50.8, n53. The figure showstbs(x,t) at different timest
5100,200,400,32 000,25 600,204 8003t0 ~with t05D/U2) and the
predicted asymptotic value from Eq.~39!.

FIG. 8. Time behavior of the concentration at the origin f
purely diffusive propagation with quasiequilibrium Freundlich a
sorption forn50.5 for a finite system. As long as no significant pa
of the total mass has diffused to the boundary, the concentra
decays proportional tot21/(11n), as predicted by the similarity so
lution for an infinite system. As soon as the distribution reaches
boundary, the asymptotic behavior changes to.t21/(12n), predicted
for a finite system. Timet is measured in units of the time sca
t05kMn21L32n/D, proportional to the escape time.
04140
-
nt

r
s

a-
t

As in model 2, the shape of the distribution depends
the parameters and one can obtain solutions with an inve
comet shape as well as solutions that stay close to the
siequilibrium solutions for a long time, depending on t
value of the adsorption/desorption rate parameters.

C. Results for vanishing velocity

Figure 8 shows the behavior for a large, but finite syste
As long as the solute has not diffused to the boundary,
concentration at a fixed position (x50) decays proportiona
to t21/(n11). As soon as a significant amount of mass h
reached the boundaries, the distribution ‘‘freezes,’’ as sho
in Fig. 9, and concentrations decay witht21/(12n).

V. SUMMARY AND CONCLUSIONS

We discussed the large-time asymptotic behavior of s
stances transported by advection and diffusion and unde
ing reversible adsorption. We generalized a kinetic mo
leading to a Freundlich isotherm in equilibrium by two di
ferent models with paths towards equilibrium that are no
linear both in the mobile and immobile concentrationsc and
s. For both models there exists a critical parameter wh
value decides whether the solution will reach quasiequi
rium locally or not.

The critical values and the exponents can be derived fr
a simple separation assumption and are in a good agree
with numerical simulations. The separation assumption is
appropriate for the case of vanishing advection in an infin
system. In this case, the asymptotic behavior can be obta
using a similarity solution approach. However, for finite sy
tems, the separation approach leads to correct results.

If the parameter is larger than its critical value, the co
centrations at fixed positions decay following power la
with an exponent different from the value predicted by t
quasiequilibrium model. Hence predictions of pollutant co
centrations from isotherms determined from batch exp
ments can lead to overestimation or underestimation
many orders of magnitude.

ity

n

e

FIG. 9. Concentration for the system from Fig. 8, rescaled byta

at t511.6t0, and the solution forg(x) derived in the Appendix.
2-8
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APPENDIX: SOLUTION OF THE ANHARMONIC
OSCILLATOR BVP FOR THE PURELY DIFFUSIVE CASE

In this appendix, we show that there is a solution forg in
the case of vanishing advection for any finite sizeL of the
system. From Eqs.~43! and ~44!, we have to solve the fol-
lowing boundary value problem:

g9~x!52
akn

D
g~x!n, ~A1!

g~2L !5g~L !50. ~A2!

The ‘‘energy’’

Eª
1

2
g8~x!21kg~x!n11, ~A3!

with k5akn/D(n11) is conserved. From the symmetry
the problem we expect that the solution has a maximum
x050 and is symmetric around this point. From the ene
conservation we then know that

g8~2L !5A~2E, ~A4!
m

h-

l.

04140
at
y

g~0!5~k21E!1/n11, ~A5!

and integrating Eq.~A4! we obtain

L5E
0

L

dx5E
g(2L)

g(0) dg

A2~E2kgn11!

5E
0

(E/k)1/(n11) dg

A2~E2kgn11!

5
1

A2k1/(n11)
E(12n)/(2n12)E

0

1 dj

A12jn11
, ~A6!

with the simple substitutionjªE21/(n11)g. As the integral
over j is finite, we see that we can find an energyE for any
L, and a solution corresponding to this energyE(L), for any
nÞ1. @The solution can be found by integration of Eq.~A3!
with the initial condition determined by Eq.~A5!.# For n
51, E(12n)/(2n12)51 and we recover the well-known resu
that the period 4L of the harmonic oscillator is independe
of its energy, such that a solution exists only for discre
values ofL.
pl.
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