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Transport of solutes undergoing a Freundlich type nonlinear and nonequilibrium
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We investigate the behavior of solutes undergoing nonequilibrium adsorption processes that lead to a Fre-
undlich isotherm in equilibrium. In contrast to a frequently used model we do not assume that the adsorption
rate is proportional to the difference between adsorbed and equilibrium concentrations, but inspect two non-
linear laws governing the path to equilibrium. With some asymptotic considerations and numerical simulations
we find that depending on the model parameters, the concentration in solution and the mass adsorbed by the
matrix do not necessarily reach quasiequilibrium.
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[. INTRODUCTION dium. Frequently one observes power laws over several or-
ders of magnitude, called “Freundlich isotherms,”
In continuum approximations, transport of solutes in po-
rous media is usually described by the so-called advection- s=kc", (4)
dispersion(or convection-diffusiop equation
wherek and n are constants with €n<1 for many sub-
ETe stances such as pesticides, polycylic aromatic hydrocarbons
—=—-U-Vc+V.-DVc+Q, (1)  (PAH'’s), or heavy metalg[1-5]).
at VA .
A further complication is that in many cases the transport

complemented by appropriate initial/boundary conditions.Of substances is too fast to allow a description of the adsorp-

Here ¢ denotes the concentration of the soluteis the ve- tion process by an equilibrium process. Unfortunately, find-

locity of the fluid, D is the effective dispersion tensor, a@d ing an appropriate phenomenological model for the adsorp-

. ion process is a very difficult and work-intensive procedure
represents sources or sinks. The latter can be used to descnIbe P Y P

interactions with the sediment, e.g., by adsorption/On the.expelrlmental side and an ill-posed problem on the
. theoretical side.
desorption.

In this paper we shall focus on this kind of solute-matrix In this paper we show the following.

interaction. If we denote bg the mass adsorbed to the solid (i) The_ path to equmbrlu_m is highly important for the_
. L : asymptotic transport behavior of substances. Systems with
matrix, we obtainQ=—4Js/dt due to mass conservation.

Further we assume one spatial dimension and homo eneothe same equilibrium isotherm that approach the isotherm
P . 9 Poﬁlowing different laws can show fundamentally different
U andD, such that the transport equation now reads

behavior if both transport and adsorption are taking place.

(i) The concentrations in the nonequilibrium reactive
d d 5? d transport model can differ by many orders of magnitude
ECZ_UgcJFDﬁC_ Fra (2 from concentrations predicted from an equilibrium model

with the same isotherm.

(iii ) Even a substance obeying a linear isotherm can show
markedly nonlinear behavior if the path to the equilibrium is
governed by a nonlinear relationship.

Further we rederive some well-known results for the dif-
fusive case for illustration of the limitations and possible
s=f(c). ) modifications of the form of the asymptotic solution we are

: . ) assuming.
In case of a linear isotherm=kc, the solutions of the trans-

port equation can be found from the solutions of BEg.with
Q=0 by rescaling the time by a “retardation factor” 1/(1
+K).

In natural porous media, however, usually more compli- A frequently used model for the temporal change of the
cated and nonlinear isotherms are observed, e.g., the Langdsorption rate on the concentratioand the adsorbed mass
muir isotherm s=k;c/(1+k,c) taking into account that s per unit volume is proportional to the deviation from the
there is only a finite number of adsorption sites in the me-equilibrium isotherm,

The simplest possible relation betwegandc is a local
equilibrium wheres is just a function(called “isotherm”)
of c,

Il. TWO GENERALIZED NONLINEAR
NONEQUILIBRIUM MODELS
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_t—a -4
§=r(kc“—s), 5 c(t,x)~t~ *y(xt™°). (12

However, in the lowest-order approximation for the quasi-
with r,k>0 and 0<n=<1 (e.g., Ref[6]). This model is, like  equilibrium case, the function can be shown to be a power
most other models, purely phenomenological and not deriveghy in the tail regior{ 7] such that the similarity solution and
from basic prinCipIeS. It is interesting to note that there is dour Separation assumption lead to the same asymptotic re-
linear dependence o but a nonlinear dependence onin  gyts for largex andt [9]. In the quasiequilibrium case, one
equilibrium, s andc are related by the Freundlich isotherm, finds that the concentration decays like a powertafwith

a=1/(1—n) for t—oo,

s=kc". (6) In Sec. Ill B, however, we show that these approaches

lead to different asymptotic behavior in the case of vanishing

In this paper we shall investigate two nonequilibrium advection, i.e., if diffusion is the only transport process. In
models that share this latter property, i.e., which lead to anis limit, the concentration after injection of a mass pulse of
Freundlich isotherm in equilibrium, but show a nonlinear gn inert substance no longer decays exponentially. In fact,
dependence both aandc. Both models are generalizations the transport equation reduces to the heat diffusion equation
of Eq. (5) and have to our knowledge not been discussed inthen, and it is well known that the solution decays propor-

the literature. tionally tot %9, i.e., it shows power law behavior even if no

Model 1: adsorption takes place. Depending on the spatial extent of
the medium, both types of asymptotic solution can be real-

S ized in different time intervals: As long as the diffusion front

-~ T(keP—s9), (7) " has not reached the boundary of the medium, the solution

approaches the similarity form. If the solute concentration

with r,p,q>0. In equilibrium @s/dt=0), adsorption in this Pecomes significant close to the boundary, the separation

model is described by a Freundlich isotherm with parameterform takes over. Therefore, for illustration of the different
k=kY@ andn=p/q. As the Freundlich exponent usually kinds of asymptotic solutions discussed above, the
lies bpetween 0 and 1, we assume thatq. asymptotic solution for the purely diffusive case will be dis-

Model 2: cussed separgtely. .
For nonvanishing advection speed, the power law behav-
ior can be regarded as evidence for a nonlinear adsorption
§:r+|kcn_s|vl (8  Process. In the case of linearly adsorbed or inert substances
gt - obeying a convection-diffusion equation, the concentration
decays exponentiallyRef. [10]) after pulse-type injection.
In equilibrium (9s/dt=0), adsorption in this model is de- we assume that the power law decay is also valid for the
scribed by a Freundlich isotherm with parameterandn.  ponequilibrium models and verify this by numerical simula-

The coefficientr . is tions. As we found a good agreement with numerical solu-
tions and as both approaches agree to lowest order for a
r.>0 if s<kc" (adsorption phage power law form of the spatial distribution, we worked with
M= ) the simpler separation assumption rather than with the simi-

*lr_<o if s>kc" (desorption pha : : o )
( P phase larity solution. Note that on an infinite domain, the separa-

such that either adsorption or desorption always try to drivdion assumptior{unlike the similarity solutioncan only be
the system towards equilibrium. valid for the tail and not for the propagating front of the
diluted substance.

IIl. ASYMPTOTIC CONSIDERATIONS

. . . . A. Nonvanishing velocity
We are interested in the large-time behavior of substances

undergoing adsorption processes described by our models 1 Let us first discuss Eq2) for U#0. Inserting Eqs(10),
and 2. We assume that the time dependenaeasfdsin the ~ (11) into Eq.(2), we obtain

tail after injection of a finite mass into the system at time

=0 can be described by power laws asymptotically, —at™* y(x)==Uy' ()t *+Dy" ()t *

C(t,X) ~t~ “y(x), (10 TAo(IET 13

s For large timest— o, we can neglect the terms proportional
s(t,x)~t"Po(x), (1D tot « ! compared td~“. Thus, Eq.(13) can only be con-

, , ) sistent if the terms proportional to ¢ are balanced by the
with «,8>0 fort—cc. This approach is less general than the;-8-1 tarm  such that and 8 are related by

similarity solution chosen in Ref§7] and[8] for quasiequi-
librium adsorption following a Freundlich isotherm. This so-
lution is of the form a=p+1. (14
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Referring back to Eq(2), neglecting the terms proportional left-hand sidglhs) must decay at least as fast as the terms on
tot~* 1 compared ta~*=t 41 is equivalent to neglect- the right-hand sidérhs), such that

ing the mobile concentratiom compared tos. In other

words, our assumption requires that small concentrations are B+1=a=ap, (23
favorably adsorbed, as it is the case for the Freundlich iso-

therm. Using this consistency relationship betweeand3,  or equivalently

we can derive the exact value far for our nonequilibrium

models. p<1. (24)
1. Model 1 Hence we find that there is a critical expongnt1 at
For the first model, we find from Eqé7) and (11), which there is a change in the asymptotic behavior of the

concentration at a fixed position. Fps1, the concentration
_ Ot B L Tk (X)PE~ P — ()t —B97 (15 d_ecays foIIovymg the same power _Iaw as |n.the quaS|eqU|I|b.—
po) [kp () o(x) 119 rium case, with an exponent that is determined by the equi-

As the signs of ,a,y,a, 8k, all are non-negative, there are librium Freundlich exponenn=p/q. For p>1, another
only two possibilities to fulfill the asymptotic equation for Power law results that is determined by the desorption expo-

too nent g rather than the equilibrium Freundlich exponent. A
(i) For large times, the term on the left-hand side is bal-transport model relying on measurements of the isotherm
anced by the second term on the right-hand side, i.e., only can, therefore, lead to vast overestimation or underesti-
mation of the concentration. The transitionat 1 is con-
—B—1=—a=—-Bq=(1-a)q, (16) tinuous forn fixed, since at this poim= p/q=1/q such that
where we used Eq14), such that . 1 1 .
419 im a(p,a)= === lma(p.a). (25
. P q 1-= N pn
i (17)
2. Model 2

irrespective ofp. On the same time, the first term on the .
right-hand side must decay at least as fast as the second term, 0" the second model, we find from Ed3), (11), and
such that (14),

ap?ﬁqz(a—l)q: a, (18) _BU(X)tiawrilk'}’(X)ntian—O'(X)tiaJrllV_ (26)

Again, there are only two possibilities to fulfill this
asymptotic equation for—oo.

(i) For large times, the term on the left-hand side is bal-
anced by the desorption terffor adsorption, the rhs is posi-
tive and cannot balance the negative) Jh<.,

due to Eq.(17), or equivalently
p=1. (19
From Eq.(18) andn=p/g<1 we also deduce that
a<1/(1-n), (20) a=(a—1)v, (27)

i.e., this asymptotic solution cannot decay faster than the an>a—1, (28)
quasiequilibrium solution.

(i) For large times, the two terms on the right-hand sideor equivalently
balance each other and the term on the left-hand side is of a
higher order int™ %, i.e.,

a= , (29
v—1
(a—1)g=ap, (21

1
such that i (30

14

1

a=T_ (22)  Again, we can see from E@27) thata<1/(1—n), i.e., this

solution decays slower than the quasiequilibrium solution.
wheren= p/q is the exponent of the Freundlich isotherm for (i) For large times, the two terms on the rhs balance each
the equilibrium state of model 1. This is the same result thafther, and the Ihs is of the order of the rhs or smaller, i.e.,
Refs.[7] and[9] obtained for reactive transport in the Fre-
undlich quasiequilibrium case. In this case, the term on the an=a—1, (31
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a=any, (32 For model 2 withv>1/n, we find from Eq.(26) analo-
gously,
or equivalently

r 1/1-v

B

This makes it easy to construct the spatial distribution for
the concentratioe. We had assumed that we could neglect
(34 and ¢ compared tos and s, respectively, so the transport
equation reads for large times,

(39

a(X)~ o=

_ 1 33

R |

In this case we obtain the result from Réfg] and[9] for the

quasiequilibrium case again. dy
Hence we find a critical exponent= 1/n, distinguishing a Ugx P e Bo=const, (40)

regime attracting the solutions towards the quasiequilibrium

asymptotics {=<1/n) and another regime leading to qualita-

tively different solutions ¢>1/n). The transition is continu-

ous atv=1/n, as

2

aso=o(X) is a constant in this case, and the only power law
solution of this equation is

v 1 1 _Be
lim a(v,n)= lim = lim = Y=y (41)
v,/ 1 v 1?1 v/Ung 1 1-n
v i.e., linear inx.
= lim a(v,n). (35
»\.1/n B. Vanishing velocity

An interesting modification is necessary if there is no ad-
vection, i.e., ifU=0, such that the only transport process is
We have found in the preceding section that depending odiffusion. For simplicity and illustration, we will consider
the values of the parametepsand v, respectively, our two only the quasiequilibrium case for the Freundlich isotherm

models can lead to asymptotic behavior different from thes=kc". In this case, Eq(2) becomes

quasiequilibrium solution. In those cases where-1/(1

—n) as in the quasiequilibrium case, the tefsidt decayed 9 92

faster than the- and s-dependent summands on the right- (1+ knc”fl)ECZ D—Zc. (42
hand side of Eqs(7) and (8) such thats and ¢ approach a IxX

guasiequilibrium state wher#s/Jt=0. The models are cho- ) ) ) )
sen in a way such that this equilibrium state is equal to & NiS equation can be mapped to the porous media equation

Freundlich isotherm and we expect that one obtains the samd1] whose asymptotics is well known. However, in order to
asymptotic behavior as for the quasiequilibrium model, i.e., dllustrate the modifications necessary in this case, we present

power law in the spatial distribution an elemental treatment here. _ ,
Formally, one can use the same separation assumption as

kn @ in the advection-diffusion equation, and will obtain the same
t“C(X,t)~y(X)~(—> X, (36) kind of solution and the same asymptotic b.ehawor in time.
u However, whether there is a nontrivial solution fgror not
. ) ] ) depends on the spatial extent of the system. For an infinite
in the tail region, as shown in Refg] or [9]. system another power law is derived than for a finite system.
For parameters chosen such that 1/(1-n), the rhs of To show this, let us insert E¢L0) into Eq.(42). For large
Egs. (7) and (8) depends only ors for t—c, while the  times, the concentration at a given point is approaching 0 due
c-dependent term can be neglected. This means that rathgy diffusion, such that &knc" L. Multiplying by t¢, we
than approaching quasiequilibrium between and  gptain
s, t*s(x,t)=o0(x) converges to a spatially constant func-
tion. If we choose, e.gp>1 in Eq.(15),

3. Spatial distribution and attraction towards equilibrium

akn
Y'(X)=— T?’(X)n, (43
Bo(X)t™ *~ro(x) =99, (37)

which is, whenx is reinterpreted as a time coordinate, the
equation of motion of an anharmonic oscillai@s long as
v=0). This has to be supplemented by appropriate boundary
conditions. For a finite system, we could for instance assume
that the mass is injected &t 0 andx=0 and absorbed at the

and, therefore|sincea=(1—a)q]

r 1/1—q
) (38)

"<X>”(E
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boundariesx=—L and x=L, such thatc(t,—L)=c(t,L) enough forx— *co. Forc—0 we haves=kc">c such that
=0. This would lead to the boundary conditions for large times most of the mass is in the immobile phase
andc can be neglected. Thus foroo,

y(=L)=y(L)=0, (44)
forming a boundary value problem together with E4B) on M ~f S dX=f kc" dx=f kt™*"['(xt™°)" dx
the interval[ —L,L]J. o o o
It is well known that for the case=1 (harmonic oscil- o
lator), this problem is a classical eigenvalue problem that has = kt—“””f_ INCINN IS (49

nontrivial solutions only for certain values bf In this case,
o= akn/D is the angular frequency, and in order to obtain
positive solution orf —L,L] with zero boundary values, the
oscillator must perform exactly half an oscillation in a time
interval of length 2, i.e., o=m/2L or L=(m/2)(D/ak).

The main reason for this behavior is that for the harmonig-
oscillator the frequency does not depend on the amplitude of
the oscillation. Fon=+ 1 this is no longer true, and we show 1
in the Appendix that the nonlinear problem defined by Egs. o= ——
(43) and(44) has a solution for any value &f Thus we get n+1’

a consistent solution for a finite medium. . . .
For an infinite medium, however, this solution is no N contrast toa=1/(1—n) in the advective case. Note that

longer consistent, since we expect that the shape of the s§2iS resultis valid for one spatial dimension, but can be gen-
lution is smoothed out more and more with increasing time eralized easily to an arbitrary number of dimensions.

while a nontrivial y(x) would mean that the shape

“freezes.” This freezing can in fact be observed for the tail V. COMPARISON WITH NUMERICAL SIMULATIONS

in the advective case, but does not apply to the front of the
distribution. A more appropriate assumption on the
asymptotic form of the solution is therefore provided by a
similarity solutionfor the concentration

4This can only be constant, if

o= an. (50)

rom Egs.(47) and (50) we can conclude that

(51)

Our analysis is not a rigorous derivation based only on the
transport and adsorption equations, but rests on the assump-
tion that the asymptotic form of the solution is properly de-
scribed by either Eq10) or Eq. (45). In order to test these
. s assumptions, we performed a number of one-dimensional
c(xH)~t “I'(xt™%)  for t—oo, (49 numerical experiments with different parameter sets and
found good agreement with the power law asymptotics de-
rived in the previous sections, if the system could evolve for
a time long enough. Depending on the value of the model
parameters(e.g., for smallr), the convergence to the
asymptotic solution can of course be very slow. In this sec-

which is dispersed infinitely for—oo. Feeded into Eq42)
and using &knc""! for large times as the concentration
goes to zero, this means that

—knl ()" D7e T al () + 6T (§)]~Dt™*"?°,  tion, we show some exemplary results for the different cases
discussed.
(46) The transport equation, E¢2), was solved numerically

by a straightforward, explicit finite difference scheme, with
with £:=t~ °x. If we assume that the mass pulse is injected aan adaptive time step control ensuring that the updated con-
x=0, we know from the symmetry of the problem that centration could not become negative. Depending on the
I'’(0)=0 such that the second term on the left-hand side isnodel, the termds/dt can diverge fors—0 or c—0. In
of second order if and thus can be neglected for any fixed order to avoid difficulties with this term, a tiny background
X, sinceé=xt"°—0 for t—o. Hence we find by balancing concentration was added in some cases, and we verified that

the exponents in that the results were not sensitive to variations of the background,
as long as the background was negligible compareziand
a(n=1)—a—1=a—256. (47) S.

For both of our models, one can obtain cases that do not
We can find a second equation relatimgand & from the  reach quasiequilibrium far—oc, but stay close to the quasi-
conservation of mass, equilibrium solution for intermediate timg$or larger . ,k
as long as the concentrations do not become too gmall

—o0

dM dfx -i-d—foc Ua%—Da2 dx=0 isti
M =g _x(c s)dx= ﬁxc &XZC x=0, A. Characteristic scales

(48) Due to the fact that there are different interesting charac-

teristic time scales, we do not introduce new dimensionless

where the last line results from a partial integration assumingariables, but the results will be presented in units of the
the boundary condition thatand itsx derivative decay fast following characteristic scales.
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FIG. 1. Breakthrough curve, i.e., time dependence of the con- FIG. 2. Asymptotic time invariance of the rescaled mobile con-
centration at a fixed positiory, for a simulation of model 1 in a centration y(x) =t“c(x,t) in a simulation withp=0.64, q=0.8.
case withp=0.64,q=0.8 in a double-logarithmic plot. The con- The figure shows“c(x,t) at different timest=40,80,160,328t,
centrationc is measured in units ok()YA~", and timet in units ~ (With t,=3.3D/U?%), and the predicted power lawy(x)
of the advection time scal&,/U. Also shown is the expected =(nk/U)°x° describing the tail in the quasiequilibrium case for
power law with exponentv=5, predicted by the nonequilibrium >D/U (but smaller than the position of the front

model. for t—o only for n<1) this is of course consistent with the

well-known resultres~kL?/(2D).
S _ . Finally, we use the characteristic time sc@éU?, i.e.,
There are several characteristic time scales involved in thﬂ']e time at which transport begins to become dominated by

problem, some of them related to transport, others, such agdvection rather than diffusion in the inert case.
r~1in model 1, related to adsorption. For the representation

of breakthrough curve@TC's), i.e., the concentration at a 2. Spatial scales

fixed positionx,, we use the advection time scalg/U asa  1he approximations for the rescaled concentratign
unit. Note that adsorption and desorption lead to retardation. ;. should become valid fox>D/U. For distances

such that the peak value of the BTC might be reached onlyjier than the spatial sca¥U, transport is dominated by
for t>xo/U. diffusion.

For the advection free case of a finite system, another For systems of finite exterit-L,L], the system radiuk
interesting time scale is the “escape time)., after which plays a natural role. Y
a significant amount of mass has reached the boundaries.
This scale can be easily estimated by dimensional analysis: 3. Concentration
Tesc NAs dimensionT (time) and can depend only on the
system sizd., the total masd injected, the dispersion co-
efficient D (dimensionL?/T), the Freundlich coefficienk
[dimension M/L)*""], and the dimensionless exponamt
For large timesc— 0 and the nonlinear time derivative op-
erator on the Ihs of Eq42) becomeknc’~ 19/ 4t. Therefore,
scaling ofk by a factor ofA is the same as scaling the time
variable byA~1, since

1. Time scales

In quasiequilibrium, the local retardation factor is (1
+knc""1) as in Eq.(42). Therefore, we expect nonlinear
effects to become important for

kncd'"1=1

c<(kn)¥a-m, (54)

and use kn)¥*~™ as a natural concentration scale.

Aknd " talat=knc" " tala(A™ ). (52)
B. Results for nonvanishing velocity
This means thatres. depends linearly ork (in the low- 1. Model 1
concentration regime Dimensional analysis yields, there- i . i
fore, For p<1, we observe the same behavior as in the quasi-

equilibrium case. Figure 1 shows the breakthrough curve
L3-n (i.e., the concentration at a fixed positiopfor a case with
Toe=f(MKMM ™t —— =:f(n) 7, (53) p=0.649=0.8, i.e.,n=p/gq=0.8. As predlcted, this curve
D shows a power law dependence with an exponenixof
=1/(1—n)=5 for large times. The shape of the rescaled
where f(n) is a function only depending on, which we  spatial distributiort*c(x,t) should approach/(x) in the tail
expect to be of order unity. In the case=1 andk>1 (since  region, i.e., become time independent. In RET$.and[9] it
we assumed<s in the analysis, which is always fulfilled is shown that fox>D/U, this distribution is proportional to
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FIG. 5. Convergence of the rescaled mobile concentration

FIG. 3. Breakthrough curve, i.e., time dependence of the con+,(x)=tec(x,t) towards a linear function in a simulation with
centration at a fixed positiory, for a simulation of model Lina =2 g=2.5. The figure showst®c(x,t) at different timest
case withp=2, q=2.5 in a double-logarithmic plot. Also shown =200,3200,25 600,204 800,1 638 40, (with t,=D/U?), and
are the power laws with the exponeat=5/3, predicted by the the predicted asymptotic linear functiop(x)=U/B(r/g) 1~ dx
nonequilibrium model and exponeat=>5, predicted by a quasi- describing the tail.
equilibrium model with the same equilibrium Freundlich isotherm.

a power lawy(x)«x“. This behavior was also observed in
our simulations fopp<<1. Figure 2 shows an example.

For p>1, our asymptotic consideration led to the predic-
tion that breakthrough curves decay asymptotically likeThis is illustrated in Fig. 5.

t~ (@1, This prediction could be verified in our numerical | i interesting to note that for the model that does not
simulations. Figure 3 shows a breakthrough curve f_or thgeach quasiequilibrium, the “comet shape” from Fig. 2 is
casep=2,0=2.5. The exponent of the power law 8  jnyerted. In contrast to the quasiequilibrium case with its
=0/(q—1)=5/3~1.667, and thus the breakthrough curvesge|t.sharpening front, in Fig. 5 the front is propagating and
o!ecay considerably slower than in the corresponding equ'“bdisperging rapidly while the position of the maximum con-
rium case fom=p/q=0.8 wherea=1/(1-n)=5. centration moves slowly towards infinity. The shape does of
Furthermore, we predicted that the rescaled adsorbeghyrse depend on the parameters and for fast adsorption and
mass distributions(x) =t”s(x,t) converges towards a spa- desorption rate constants the front can look self-sharpening
tial constant distribution in this casec(X)=0o  for along time and breakthrough curves can stay close to the

=(r/B)**~. This behavior is shown in Fig. 4. quasiequilibrium  solutions before  approaching the
Based on this result, we derived that the mobile concengsymptotic solution fot— .

tration c increases linearly ix. For model 1, Eq(41) reads

Bo
tc(x,t)~y(x)= vx. (55)

14 . . . . . 107
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FIG. 4. Convergence of the rescaled adsorbed mass density FIG. 6. Breakthrough curve for a simulation of model 2 in a
a(x)=tPs(x,t) towards a constant valug, in a simulation with  case withn=0.8, »=3 in a double-logarithmic plot. Also shown
p=2,0=2.5. The figure showstPs(x,t) at different timest are the power laws with exponent=3/2, predicted by the non-
=200,3200,25 600,204 800,1 638 400, (with t,=D/U?), nor- equilibrium model, and exponent=5, predicted by a quasiequi-
malized to the predicted asymptotic valug=(r/g8)Y1~9, librium model with the same equilibrium Freundlich isotherm.

041402-7



UWE JAEKEL AND HARRY VEREECKEN PHYSICAL REVIEW E65 041402

1.6

"oredicted —— . . . . . . . t“c(t,lx T
14 | X)
1 #’_71._1-_1'_+++++ . 4
12 m | *;V*ﬁ ++++
bo 1L 08 | //* +++ 4
= =) s "
z 08y T o6 7 . 1
o 3 Vi +
~ 06 F / T,
04 P, . 1
04 ¥ +
I +
02t | N Tee el 02 4 +
0 ' ' -“““"““I 7777777777777777 0 ”+ L L L L L L L L L '
-200 0 200 400 600 800 1000
-1 -08 -06 -04 02 0 02 04 06 08 1

X [units of D/U ] "
X

FIG. 7. Convergence of the rescaled adsorbed mass density
y(x)=tPs(x,t) to its asymptotic value in a simulation of model 2
with n=0.8, »=3. The figure shows’s(x,t) at different timest
=100,200,400,32 000,25 600,204 800, (with t,=D/U?) and the

FIG. 9. Concentration for the system from Fig. 8, rescalet’by
att=11.6r,, and the solution fory(x) derived in the Appendix.

predicted asymptotic value from E(B9). As in model 2, the shape of the distribution depends on
the parameters and one can obtain solutions with an inverted
2. Model 2 comet shape as well as solutions that stay close to the qua-

For v<1/n, we observed again that the solutions ap_S|eqU|I|br|um solutions for a long time, depending on the

proached the quasiequilibrium asymptotics. We don’t presenf@/Ue of the adsorption/desorption rate parameters.
a figure here, the results look very similar as in model 1.
For v>1/n, the results of the simulations agreed with our
asymptotic results as they did for model 1. Figure 6 shows
the breakthrough curves for a case with 0.8 andr=3. As Figure 8 shows the behavior for a large, but finite system.
predicted from our asymptotic considerations, the concentraAs long as the solute has not diffused to the boundary, the
tions decays following a power law in time with an exponentconcentration at a fixed positiox€ 0) decays proportional
of v/(v—1)=—23/2 rather than 1f{—1)=—5 as predicted to t~¥("*1) As soon as a significant amount of mass has
by the corresponding quasiequiliborium model. Figure 7reached the boundaries, the distribution “freezes,” as shown
shows the spatial distribution of rescaled byt?, which in Fig. 9, and concentrations decay wiR(1—n)
slowly approaches the constant value predicted in(B§).

C. Results for vanishing velocity

V. SUMMARY AND CONCLUSIONS

We discussed the large-time asymptotic behavior of sub-
stances transported by advection and diffusion and undergo-
ing reversible adsorption. We generalized a kinetic model
leading to a Freundlich isotherm in equilibrium by two dif-
ferent models with paths towards equilibrium that are non-
linear both in the mobile and immobile concentratiarsnd
s. For both models there exists a critical parameter whose
value decides whether the solution will reach quasiequilib-
rium locally or not.

The critical values and the exponents can be derived from
a simple separation assumption and are in a good agreement
: : with numerical simulations. The separation assumption is in-
1 10 appropriate for the case of vanishing advection in an infinite

t [units of 7] system. In this case, the asymptotic behavior can be obtained

FIG. 8. Time behavior of the concentration at the origin for using a similarity ;olution approach. However, for finite sys-
purely diffusive propagation with quasiequilibrium Freundlich ad- tems, the separatlon approach Iea}ds tQ _correct results.
sorption forn= 0.5 for a finite system. As long as no significant part If th? parameter Is Iarg_er than its C”t'cal_value’ the con-
of the total mass has diffused to the boundary, the concentratiof€ntrations at fixed positions decay following power laws
decays proportional to~¥(1*" as predicted by the similarity so- With an exponent different from the value predicted by the
lution for an infinite system. As soon as the distribution reaches théluasiequilibrium model. Hence predictions of pollutant con-
boundary, the asymptotic behavior changesto Y(*~", predicted ~ centrations from isotherms determined from batch experi-
for a finite system. Time is measured in units of the time scale ments can lead to overestimation or underestimation by
T7o=kM""1L3~"/D, proportional to the escape time. many orders of magnitude.

©
=

0.01 |

¢ [units of (kn)/(1"™ ]

0.001 ¢
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APPENDIX: SOLUTION OF THE ANHARMONIC y(0)= (K_lE)1/”+1, (A5)
OSCILLATOR BVP FOR THE PURELY DIFFUSIVE CASE

and integrating Eq(A4) we obtain
In this appendix, we show that there is a solution fon integrating EqiA4) w I

the case of vanishing advection for any finite sizef the L 0) dy
system. From Eq943) and(44), we have to solve the fol- L= J dx= —
lowing boundary value problem: 0 Y-DV2(E—ky"")
(%) akn (0" AD) J‘(E/K)ll(n+l) dy
X)=——y(X)", = I S
7 D’ 0 2(E—xy"Y)
y(=L)=y(L)=0. (A2) _ 1 E(lfn)’@””)fl dé (A6
The “energy” V2, 01-¢t

1 with the simple substitutiog:=E~Y("" 1)y As the integral
E:=3 Y ()% + ky(X)" L, (A3)  over¢ is finite, we see that we can find an enefgjor any
L, and a solution corresponding to this eneEfy.), for any
with k= akn/D(n+1) is conserved. From the symmetry of N# 1.[The solution can be found by integration of E43)
the problem we expect that the solution has a maximum agith the initial condition determined by EdAS5).] For n
xo=0 and is symmetric around this point. From the energy=1, E®~"/("*2=1 and we recover the well-known resuit

conservation we then know that that the period & of the harmonic oscillator is independent
of its energy, such that a solution exists only for discrete
y'(—L)=\(2E, (A4)  values ofL.
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